#LyX 1.6.5 created this file. For more info see http://www.lyx.org/
\lyxformat 245
\begin_document
\begin_header
\textclass literate-article
\begin_preamble
\usepackage[dvips,colorlinks=true,linkcolor=blue]{hyperref}
\DeclareGraphicsExtensions{.pdf}
\end_preamble
\language american
\inputencoding auto
\fontscheme ae
\graphics default
\paperfontsize default
\spacing single
\papersize a4paper
\use_geometry true
\use_amsmath 1
\cite_engine basic
\use_bibtopic false
\paperorientation portrait
\leftmargin 36pt
\topmargin 1in
\rightmargin 36pt
\bottommargin 1in
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\papercolumns 2
\papersides 1
\paperpagestyle fancy
\tracking_changes false
\output_changes false
\author ""
\author ""
\end_header
\begin_body
\begin_layout Title
b16 Documentation
\end_layout
\begin_layout Author
\noun on
Bernd Paysan
\end_layout
\begin_layout Standard
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
lhead{
\end_layout
\end_inset
b16 Documentation
\begin_inset ERT
status collapsed
\begin_layout Standard
}
\backslash
chead{
\end_layout
\end_inset
\noun on
Bernd Paysan
\noun default
\begin_inset ERT
status collapsed
\begin_layout Standard
}
\end_layout
\end_inset
\end_layout
\begin_layout Abstract
This article presents architecture and implementation of the b16 stack processor.
This processor is inspired by
\noun on
Chuck Moore'
\noun default
s newest Forth processors.
The minimalistic design fits into small FPGAs and ASICs and is ideally
suited for applications that need both control and calculations.
The factor is shifted towards control to save space.
The synthesizible implementation uses Verilog.
\end_layout
\begin_layout Section*
Introduction
\end_layout
\begin_layout Standard
Minimalistic CPUs can be used in many designs.
A state machine often is too complicated and too difficult to develop,
when there are more than a few states.
A program with subroutines can perform a lot more complex tasks, and is
easier to develop at the same time.
Also, ROM and RAM blocks occupy much less place on silicon than
\begin_inset Quotes eld
\end_inset
random logic
\begin_inset Quotes erd
\end_inset
.
That's also valid for FPGAs, where
\begin_inset Quotes eld
\end_inset
block RAM
\begin_inset Quotes erd
\end_inset
is---in contrast to logic elements---plenty.
\end_layout
\begin_layout Standard
The architecture is inspired by the c18 from
\noun on
Chuck Moore
\noun default
\begin_inset LatexCommand \cite{c18}
\end_inset
.
The exact instruction mix is different; it also differs from the standard
b16 core.
Also, this architecture is byte-addressed.
\end_layout
\begin_layout Standard
A word about Verilog: Verilog is a C-like language, but tailored for the
purpose to simulate logic, and to write synthesizible code.
Variables are bits and bit vectors, and assignments are typically non-blocking,
i.e.
on assignments first all right sides are computed, and the left sides are
modified afterwards.
Also, Verilog has events, like changing of values or clock edges, and blocks
can wait on them.
\end_layout
\begin_layout Section
Architectural Overview
\end_layout
\begin_layout Standard
The core components are
\end_layout
\begin_layout Itemize
An ALU
\end_layout
\begin_layout Itemize
A data stack with top and next of stack (T and N) as inputs for the ALU
\end_layout
\begin_layout Itemize
A return stack
\end_layout
\begin_layout Itemize
An instruction pointer P
\end_layout
\begin_layout Itemize
An address mux
\family typewriter
addr
\family default
, to address external memory
\end_layout
\begin_layout Itemize
An instruction latch I
\end_layout
\begin_layout Standard
Figure
\begin_inset LatexCommand \ref{blockdiagram}
\end_inset
shows a block diagram.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Standard
\align center
\begin_inset Graphics
filename b16-small.pdf
width 100col%
\end_inset
\end_layout
\begin_layout Caption
Block Diagram
\begin_inset LatexCommand \label{blockdiagram}
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Register
\end_layout
\begin_layout Standard
In addition to the standard Forth machine registers there are control registers
for external RAM (
\family typewriter
rd
\family default
and
\family typewriter
wr
\family default
), stack pointers (
\family typewriter
sp
\family default
and
\family typewriter
rp
\family default
), and a carry
\family typewriter
c
\family default
.
For consistency with Chuck Moores' nomenclature, violating most coding
style guidelines, the Forth machine registers are single-letter variables
in upper case.
Since the source code is a LyX document, you can use the
\begin_inset Quotes eld
\end_inset
search whole word
\begin_inset Quotes erd
\end_inset
mode to find them easily, and they also show up on top of the signal list
during simulation.
\end_layout
\begin_layout Standard
\begin_inset VSpace medskip
\end_inset
\end_layout
\begin_layout Standard
\align center
\begin_inset Tabular
\begin_inset Text
\begin_layout Standard
\emph on
Name
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
\emph on
Function
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
T
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
Top of Stack
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
I
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
Instruction Bundle
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
P
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
Program Counter
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
R
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
Top of Returnstack
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
state
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
Processor State
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
sp
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
Stack Pointer
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
rp
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
Return Stack Pointer
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
c
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
Carry Flag
\end_layout
\end_inset
|
\end_inset
\end_layout
\begin_layout Standard
\begin_inset VSpace medskip
\end_inset
\end_layout
\begin_layout Scrap
<>=
\newline
reg [sdep-1:0] sp;
\newline
reg [rdep-1:0] rp;
\newline
\newline
reg `L T, I, P, R;
\newline
reg [1:0] state;
\newline
reg c;
\newline
@
\end_layout
\begin_layout Standard
\begin_inset Float table
wide true
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Tabular
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
2
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
3
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
4
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
5
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
6
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
7
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
\emph on
Comment
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
nop
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
call
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
jmp
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
ret
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
jz
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
jnz
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
jc
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
jnc
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
exec
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
goto
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
ret
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
gz
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
gnz
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
gc
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
gnc
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
\emph on
for slot 3
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
8
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
xor
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
com
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
and
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
or
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
+
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
+c
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $*+$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $/-$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
10
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
!+
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
@+
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
@
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
lit
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
c!+
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
c@+
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
c@
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
litc
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
!.
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
@.
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
@
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
lit
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
c!.
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
c@.
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
c@
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
litc
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
\emph on
for slot 1
\emph default
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
18
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
nip
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
drop
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
over
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
dup
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
>r
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
r>
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
|
\end_inset
\end_layout
\begin_layout Caption
Instruction Set
\begin_inset LatexCommand \label{instructions}
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Section
Instruction Set
\end_layout
\begin_layout Standard
There are 32 different instructions.
Since several instructions fit into a 16 bit word, we call the bits to
store the packed instructions in an instruction word
\begin_inset Quotes eld
\end_inset
slot
\begin_inset Quotes erd
\end_inset
, and the instruction word itself
\begin_inset Quotes eld
\end_inset
bundle
\begin_inset Quotes erd
\end_inset
.
The arrangement here is 1,5,5,5, i.e.
the first slot is only one bit large (the more significant bits are filled
with 0), and the others all 5 bits.
\end_layout
\begin_layout Standard
The operations in one instruction word are executed one after the other.
Each instruction takes one cycle, memory operation (including instruction
fetch) need another cycle.
Which instruction is to be executed is stored in the variable
\family typewriter
state
\family default
.
\end_layout
\begin_layout Standard
The instruction set is divided into four groups: jumps, ALU, memory, and
stack.
Table
\begin_inset LatexCommand \ref{instructions}
\end_inset
shows an overview over the instruction set.
Note: Some special characters indicate functions as follows:
\end_layout
\begin_layout Description
!
\begin_inset Quotes eld
\end_inset
store
\begin_inset Quotes erd
\end_inset
\end_layout
\begin_layout Description
@
\begin_inset Quotes eld
\end_inset
load
\begin_inset Quotes erd
\end_inset
,
\end_layout
\begin_layout Description
>
\begin_inset Quotes eld
\end_inset
to
\begin_inset Quotes erd
\end_inset
if before,
\begin_inset Quotes eld
\end_inset
from
\begin_inset Quotes erd
\end_inset
if afterwards.
\end_layout
\begin_layout Standard
Operations will be described using a
\begin_inset Quotes eld
\end_inset
stack effect
\begin_inset Quotes erd
\end_inset
.
This is a template for the stack elements before and after the operation,
separated by a long dash.
The names are listed in the order bottom to top, unchanged stack elements
below are not listed.
\end_layout
\begin_layout Standard
Jumps use the rest of the instruction word as target address (except
\family typewriter
ret
\family default
).
The lower bits of the instruction pointer P are replaced, there's nothing
added.
For instructions in the last slot, no address remains, so they use T (TOS)
as target.
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Scrap
<>=
\newline
// instruction and branch target selection
\newline
wire [4:0] inst, rwinst;
\newline
reg `L jmp;
\newline
\newline
assign inst = { 4'b0000, data[15], I[14:0] }
\newline
>> (5*(3-state[1:0]));
\newline
assign rwinst = { 5'b00000, I[14:0] }
\newline
>> (5*(3-state[1:0]));
\newline
\newline
always @(state or I or P or T or data)
\newline
case(state[1:0])
\newline
2'b00: jmp = { data[14:0], 1'b0 };
\newline
2'b01: jmp = { P[15:11], I[9:0], 1'b0 };
\newline
2'b10: jmp = { P[15:6], I[4:0], 1'b0 };
\newline
2'b11: jmp = { T[15:1], 1'b0 };
\newline
endcase // casez(state)
\newline
@
\end_layout
\begin_layout Standard
The instructions themselves are executed depending on
\family typewriter
inst
\family default
:
\end_layout
\begin_layout Scrap
<>=
\newline
case(inst)
\newline
<>
\newline
<>
\newline
<>
\newline
<>
\newline
endcase // case(inst)
\newline
@
\end_layout
\begin_layout Subsection
Jumps
\end_layout
\begin_layout Standard
In detail, jumps are performed as follows: the target address is stored
in the address latch
\family typewriter
addr
\family default
, which addresses memory, not in the P register.
The register P will be set to the incremented value of
\family typewriter
addr
\family default
, after the instruction fetch cycle.
Apart from
\family typewriter
call
\family default
,
\family typewriter
jmp
\family default
and
\family typewriter
ret
\family default
there are conditional jumps, which test for 0 and carry.
The lowest bit of the return stack is used to save the carry flag across
calls.
Conditional instructions don't consume the tested value, which is different
from Forth.
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Standard
To make it easier to understand, I also define the effect of an instruction
in a pseudo language.
Every instruction has a stack effect (before---after) with top of stack
on the right,
\begin_inset Quotes eld
\end_inset
r:
\begin_inset Quotes erd
\end_inset
prefix indicating return stack, and register assignments:
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
nop ( --- )
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
call ( ---r:P )
\begin_inset Formula $\mathrm{P}\leftarrow jmp$
\end_inset
;
\begin_inset Formula $\mathrm{c}\leftarrow0$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
jmp ( --- )
\begin_inset Formula $\mathrm{P}\leftarrow jmp$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
ret ( r:a--- )
\begin_inset Formula $\mathrm{P}\leftarrow a\wedge\$\mathrm{FFFE}$
\end_inset
;
\begin_inset Formula $\mathrm{c}\leftarrow a\wedge1$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
jz ( n--- )
\begin_inset Formula $\mathbf{if}(n=0)\,\mathrm{P}\leftarrow jmp$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
jnz ( n--- )
\begin_inset Formula $\mathbf{if}(n\ne0)\,\mathrm{P}\leftarrow jmp$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
jc ( x--- )
\begin_inset Formula $\mathbf{if}(c)\,\mathrm{P}\leftarrow jmp$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
jnc ( x--- )
\begin_inset Formula $\mathbf{if}(c=0)\,\mathrm{P}\leftarrow jmp$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Scrap
<>=
\newline
5'b00001: begin // call
\newline
rp <= rpdec;
\newline
R <= { ~|state ? incaddr[15:1] : P[15:1], c };
\newline
P <= jmp;
\newline
c <= 1'b0;
\newline
if(state == 2'b11) `DROP;
\newline
end // case: 5'b00001
\newline
5'b00010: begin // jmp
\newline
P <= jmp;
\newline
if(state == 2'b11) `DROP;
\newline
end
\newline
5'b00011: // ret
\newline
{ rp, c, P, R } <=
\newline
{ rpinc, R[0], R[l-1:1], 1'b0, toR };
\newline
5'b00100, 5'b00101, 5'b00110, 5'b00111:
\newline
begin // conditional jmps
\newline
if((inst[1] ? c : zero) ^ inst[0])
\newline
P <= jmp;
\newline
`DROP;
\newline
end
\newline
@
\end_layout
\begin_layout Subsection
ALU Operations
\end_layout
\begin_layout Standard
The ALU instructions use the ALU, which computes a result
\family typewriter
res
\family default
and a carry bit from T and N.
The instruction
\family typewriter
com
\family default
is an exception, since it only inverts T---that doesn't require an ALU.
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Ordinary ALU instructions just write the result of the ALU into T and c,
and reload N.
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
xor ( a b---r )
\begin_inset Formula $r\leftarrow a\oplus b$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
com ( a---r )
\begin_inset Formula $r\leftarrow a\oplus\$\mathrm{FFFF}$
\end_inset
,
\begin_inset Formula $\mathrm{c}\leftarrow1$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
and ( a b---r )
\begin_inset Formula $r\leftarrow a\wedge b$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
or ( a b---r )
\begin_inset Formula $r\leftarrow a\vee b$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
+ ( a b---r )
\begin_inset Formula $\mathrm{c},r\leftarrow a+b$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
+c ( a b---r )
\begin_inset Formula $\mathrm{c},r\leftarrow a+b+\mathrm{c}$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
\begin_inset Formula $*$
\end_inset
+ ( a b---a r )
\begin_inset Formula $\mathbf{if}(\mathrm{c})\, c_{n},r\leftarrow a+b\,\mathbf{else}\, c_{n},r\leftarrow0,b$
\end_inset
;
\begin_inset Formula $r,\mathrm{R},\mathrm{c}\leftarrow c_{n},r,\mathrm{R}$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
/-- ( a b---a r )
\begin_inset Formula $c_{n},r_{n}\leftarrow a+b+1;$
\end_inset
\begin_inset Formula $\mathbf{if}(\mathrm{c}\vee c_{n})\, r\leftarrow r_{n}$
\end_inset
;
\begin_inset Formula $\mathrm{c},r,\mathrm{R}\leftarrow r,\mathrm{R},\mathrm{c}\vee c_{n}$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Scrap
<>=
\newline
5'b01001: // com
\newline
{ c, T } <= { 1'b1, ~T };
\newline
5'b01110: // *+
\newline
{ T, R, c } <=
\newline
{ c ? { carry, res } : { 1'b0, T }, R };
\newline
5'b01111: // /-
\newline
{ c, T, R } <=
\newline
{ (c | carry) ? res : T, R, (c | carry) };
\newline
5'b01000, 5'b01010, 5'b01011, 5'b01100, 5'b01101:
\newline
// xor, and, or, +, +c
\newline
{ sp, c, T } <= { spinc, carry, res };
\newline
@
\end_layout
\begin_layout Subsection
Memory Instructions
\end_layout
\begin_layout Standard
Memory instructions use either T as address, and N as data (source or destinatio
n), or P as address, and T as destination (literals).
The address is auto-incremented, except for instructions in the first slot
which use T as address---this is to implement read-modify-write instructions
(non-incremeting is written as @.
or !.
in the assembler, don't care as @* or !*).
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
!+ ( n A---A' )
\begin_inset Formula $mem[A]\leftarrow n$
\end_inset
;
\begin_inset Formula $\mathrm{A'}\leftarrow\mathrm{A}+2$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
@+ ( A---n A' )
\begin_inset Formula $n\leftarrow mem[\mathrm{A}]$
\end_inset
;
\begin_inset Formula $\mathrm{A'}\leftarrow\mathrm{A}+2$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
@ ( A---n )
\begin_inset Formula $n\leftarrow mem[\mathrm{A}]$
\end_inset
;
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
lit ( ---n )
\begin_inset Formula $n\leftarrow mem[\mathrm{P}]$
\end_inset
;
\begin_inset Formula $\mathrm{P}\leftarrow\mathrm{P}+2$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
c!+ ( c A---A' )
\begin_inset Formula $mem.b[\mathrm{A}]\leftarrow c$
\end_inset
;
\begin_inset Formula $\mathrm{A'}\leftarrow\mathrm{A}+1$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
c@+ ( A---c A' )
\begin_inset Formula $c\leftarrow mem.b[\mathrm{A}]$
\end_inset
;
\begin_inset Formula $\mathrm{A'}\leftarrow\mathrm{A}+1$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
c@ ( A---c )
\begin_inset Formula $c\leftarrow mem.b[\mathrm{A}]$
\end_inset
;
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
litc ( ---c )
\begin_inset Formula $c\leftarrow mem.b[\mathrm{P}]$
\end_inset
;
\begin_inset Formula $\mathrm{P}\leftarrow\mathrm{P}+1$
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Scrap
<>=
\newline
wire `L incaddr, dataw, datas;
\newline
wire tos2r, tos2n;
\newline
wire incby, bswap, addrsel, access, rd;
\newline
wire [1:0] wr;
\newline
\newline
assign incby = (rwinst[4:2] != 3'b101);
\newline
assign access = (rwinst[4:3]==2'b10);
\newline
assign addrsel = rd ?
\newline
(access & (rwinst[1:0] != 2'b11)) : |wr;
\newline
assign rd = (state==2'b00) ||
\newline
(access && (rwinst[1:0]!=2'b00));
\newline
assign wr = (access && (rwinst[1:0]==2'b00)) ?
\newline
{ ~rwinst[2] | ~T[0],
\newline
~rwinst[2] | T[0] } : 2'b00;
\newline
assign addr = addrsel ? T : P;
\newline
assign incaddr = addr + incby + 1;
\newline
assign tos2n = (!rd | (rwinst[1:0] == 2'b11));
\newline
assign toN = tos2n ? T : dataw;
\newline
assign bswap = ~incby ^ addr[0];
\newline
assign datas = bswap ? { data[7:0], data[l-1:8] }
\newline
: data;
\newline
assign dataw = incby ? datas
\newline
: { 8'h00, datas[7:0] };
\newline
assign dataout = bswap ? { N[7:0], N[l-1:8] }
\newline
: N;
\newline
@
\end_layout
\begin_layout Standard
Memory access can't just be done word wise, but also byte wise.
Therefore two write lines exist.
For byte wise store the lower byte of T is copied to the higher one.
\end_layout
\begin_layout Scrap
<>=
\newline
5'b10000, 5'b10001, 5'b10100, 5'b10101:
\newline
begin // !+, @+, c!+, c@+
\newline
if(nextstate != 2'b10) T <= incaddr;
\newline
sp <= rd ? spdec : spinc;
\newline
end
\newline
5'b10010, 5'b10011, 5'b10110, 5'b10111:
\newline
T <= dataw; // @, lit, c@, litc
\newline
@
\end_layout
\begin_layout Standard
Memory accesses need an extra cycle.
Here the result of the memory access is handled.
\end_layout
\begin_layout Scrap
<>=
\newline
<>
\newline
if(|state[1:0]) begin
\newline
<>
\newline
end else begin
\newline
<>
\newline
end
\newline
@
\end_layout
\begin_layout Scrap
<>=
\newline
$write("%b[%b] T=%b%x:%x[%x], ",
\newline
inst, state, c, T, N, sp);
\newline
$write("P=%x, I=%x, R=%x[%x], res=%b%x
\backslash
n",
\newline
P, I, R, rp, carry, res);
\newline
@
\end_layout
\begin_layout Standard
After the access is completed, the result for a load has to be pushed on
the stack, or into the instruction register; for stores, the TOS is to
be dropped.
\end_layout
\begin_layout Scrap
<>=
\newline
if(rd && { inst[4:3], inst[1:0] } != 4'b1010)
\newline
sp <= spdec;
\newline
if(|wr) sp <= spinc;
\newline
@
\end_layout
\begin_layout Standard
Furthermore, the incremented address may go back to the program pointer.
\end_layout
\begin_layout Scrap
<>=
\newline
if(~|state ||
\newline
({ inst[4:3], inst[1:0] } == 4'b1011))
\newline
P <= incaddr;
\newline
@
\end_layout
\begin_layout Standard
To shortcut a
\family typewriter
nop
\family default
in the first instruction, there's some special logic.
That's the second part of NEXT.
\end_layout
\begin_layout Scrap
<>=
\newline
I <= data;
\newline
if(!data[15]) state[1:0] <= 2'b01;
\newline
@
\end_layout
\begin_layout Subsubsection
Peripherals
\end_layout
\begin_layout Standard
Peripherals should only use address bits [15:1], read a whole word, and
select the bytes written to based on the two write bits (bit 1 for most
significant byte, bit 0 for least significant byte).
\end_layout
\begin_layout Subsection
Stack Instructions
\end_layout
\begin_layout Standard
Stack instructions change the stack pointer and move values into and out
of latches.
With the 6 used stack operations, one notes that
\family typewriter
swap
\family default
is missing.
Instead, there's
\family typewriter
nip
\family default
.
The reason is a possible implementation option: it's possible to omit N,
and fetch this value directly out of the stack RAM.
This consumes more time, but saves space.
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
nip ( a b---b )
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
drop ( a--- )
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
over ( a b---a b a )
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
dup ( a---a a )
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
>r ( a---r:a )
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Description
r> ( r:a---a )
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Scrap
<>=
\newline
5'b11000: sp <= spinc; // nip
\newline
5'b11001: `DROP; // drop
\newline
5'b11010: { sp, T } <= { spdec, N }; // over
\newline
5'b11011: sp <= spdec; // dup
\newline
5'b11100: begin // >r
\newline
R <= T; rp <= rpdec; `DROP;
\newline
end // case: 5'b11100
\newline
5'b11110: begin // r>
\newline
{ sp, T, R } <= { spdec, R, toR };
\newline
rp <= rpinc;
\newline
end // case: 5'b11110
\newline
default ; // noop
\newline
@
\end_layout
\begin_layout Section
The Rest of the Implementation
\end_layout
\begin_layout Standard
First the implementation file(s) with comment and modules.
You can either have all in one file (
\family typewriter
b16.v
\family default
), or each module in a file with the same name as the module---the defines
will go to
\family typewriter
b16-defines.v
\family default
for central manipulation of the defines.
\end_layout
\begin_layout Scrap
<>=
\newline
/*
\newline
* b16 core: 16 bits,
\newline
* inspired by c18 core from Chuck Moore
\newline
* (c) 2002-2011 by Bernd Paysan
\newline
*
\newline
* <>
\newline
*/
\newline
@
\end_layout
\begin_layout Scrap
<>=
\newline
`define L [l-1:0]
\newline
`define DROP { sp, T } <= { spinc, N }
\newline
`define DEBUGGING
\newline
`define FPGA
\newline
// `define BUSTRI
\newline
@
\end_layout
\begin_layout Scrap
<>=
\newline
<>
\newline
/*
\newline
<>
\newline
*/
\newline
<>
\newline
\newline
<>
\newline
<>
\newline
<>
\newline
<>
\newline
<>
\newline
@
\end_layout
\begin_layout Scrap
<>=
\newline
<>
\newline
@
\end_layout
\begin_layout Scrap
<>=
\newline
<>
\newline
`include "b16-defines.v"
\newline
\newline
<>
\newline
@
\end_layout
\begin_layout Scrap
<>=
\newline
<>
\newline
`include "b16-defines.v"
\newline
\newline
<>
\newline
@
\end_layout
\begin_layout Scrap
<>=
\newline
<>
\newline
`include "b16-defines.v"
\newline
\newline
<>
\newline
@
\end_layout
\begin_layout Scrap
<>=
\newline
<>
\newline
/*
\newline
<>
\newline
*/
\newline
`include "b16-defines.v"
\newline
\newline
<>
\newline
@
\end_layout
\begin_layout Scrap
<>=
\newline
<>
\newline
`include "b16-defines.v"
\newline
\newline
<>
\newline
@
\end_layout
\begin_layout Scrap
<>=
\newline
This program is free software; you can redistribute it and/or modify
\newline
it under the terms of the GNU General Public License as published by
\newline
the Free Software Foundation; version 2 of the License or any later.
\newline
\newline
This program is distributed in the hope that it will be useful,
\newline
but WITHOUT ANY WARRANTY; without even the implied warranty of
\newline
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the
\newline
GNU General Public License for more details.
\newline
\newline
This is not the source code of the program, the source code is a LyX
\newline
literate programming style article.
\newline
@
\end_layout
\begin_layout Scrap
<>=
\newline
* Instruction set:
\newline
* 1, 5, 5, 5 bits
\newline
* 0 1 2 3 4 5 6 7
\newline
* 0: nop call jmp ret jz jnz jc jnc
\newline
* /3 exec goto ret gz gnz gc gnc
\newline
* 8: xor com and or + +c *+ /-
\newline
* 10: !+ @+ @ lit c!+ c@+ c@ litc
\newline
* /1 !.
@.
@ lit c!.
c@.
c@ litc
\newline
* 18: nip drop over dup >r r>
\newline
@
\end_layout
\begin_layout Subsection
Top Level
\end_layout
\begin_layout Standard
The CPU consists of several parts, which are all implemented in the same
Verilog module.
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Scrap
<>=
\newline
module cpu(clk, run, nreset, addr, rd, wr, data,
\newline
dataout, scanning, atpg
\newline
`ifdef DEBUGGING,
\newline
dr, dw, daddr, din, dout, bp`endif);
\newline
<>
\newline
<>
\newline
<>
\newline
<>
\newline
<>
\newline
<>
\newline
<>
\newline
<>
\newline
<>
\newline
\newline
always @(posedge clk or negedge nreset)
\newline
<>
\newline
\newline
endmodule // cpu
\newline
@
\end_layout
\begin_layout Standard
First, Verilog needs port declarations, so that it can know what's input
and output.
The parameter are used to configure other word sizes and stack depths.
The CPU is not fully scalable, e.g.
the instruction decoder or the byte swap operation for byte access depends
on 16 bit word size, but those parts of the CPU that are scalable can be
scaled by changing that parameter---the others need manual intervention.
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Scrap
<>=
\newline
parameter rstaddr=16'h3FFE, show=0,
\newline
l=16, sdep=4, rdep=4;
\newline
input clk, run, nreset, scanning, atpg;
\newline
output `L addr;
\newline
output rd;
\newline
output [1:0] wr;
\newline
input `L data;
\newline
output `L dataout;
\newline
<>
\newline
@
\end_layout
\begin_layout Standard
The ALU is instantiated with the configured width, and the necessary wires
are declared
\end_layout
\begin_layout Scrap
<>=
\newline
wire `L res, toN, toR, N;
\newline
wire carry, zero;
\newline
\newline
alu #(l) alu16(.res(res), .carry(carry),
\newline
.zero(zero),
\newline
.T(T), .N(N), .c(c),
\newline
.inst(inst[2:0]));
\newline
@
\end_layout
\begin_layout Standard
Since the stacks work in parallel, we have to calculate when a value is
pushed onto the stack (thus
\series bold
only
\series default
if something is stored there).
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Scrap
<>=
\newline
reg dpush, rpush;
\newline
\newline
always @(state or inst or rd or run <>)
\newline
begin
\newline
rpush = 1'b0;
\newline
dpush = (|state[1:0] & rd) |
\newline
(inst[4] && inst[3] && inst[1]);
\newline
case(inst)
\newline
5'b00001: rpush = |state[1:0] | run;
\newline
5'b11100: rpush = 1'b1;
\newline
default ;
\newline
endcase // case(inst)
\newline
<>
\newline
end
\newline
@
\end_layout
\begin_layout Standard
The stacks don't only consist of the two stack modules, but also need an
incremented and decremented stack pointer.
The return stack even allows to write the top of return stack even without
changing the return stack depth.
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Scrap
<>=
\newline
wire [sdep-1:0] spdec, spinc;
\newline
wire [rdep-1:0] rpdec, rpinc;
\newline
\newline
stack #(sdep,l) dstack(.clk(clk),
\newline
.sp(sp),
\newline
.spdec(spdec),
\newline
.push(dpush),
\newline
.in(toN),
\newline
.out(N),
\newline
.scan(scanning));
\newline
stack #(rdep,l) rstack(.clk(clk),
\newline
.sp(rp),
\newline
.spdec(rpdec),
\newline
.push(rpush),
\newline
.in(R),
\newline
.out(toR),
\newline
.scan(scanning));
\newline
\newline
assign spdec = sp-{{(sdep-1){1'b0}}, 1'b1};
\newline
assign spinc = sp+{{(sdep-1){1'b0}}, 1'b1};
\newline
assign rpdec = rp-{{(rdep-1){1'b0}}, 1'b1};
\newline
assign rpinc = rp+{{(rdep-1){1'b0}}, 1'b1};
\newline
@
\end_layout
\begin_layout Standard
The basic core is the fully synchronous register update.
Each register needs a reset value, and depending on the state transition,
the corresponding assignments have to be coded.
Most of that is from above, only the instruction fetch and the assignment
of the next value of
\family typewriter
incby
\family default
has to be done.
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Scrap
<>=
\newline
if(!nreset) begin
\newline
<>
\newline
end else if(run) begin
\newline
`ifdef REPORT_VERBOSE
\newline
if(show) begin
\newline
<>
\newline
end
\newline
`endif
\newline
<>
\newline
state <= nextstate;
\newline
<>
\newline
end else begin // debug
\newline
<>
\newline
end // else: !if(nreset)
\newline
@
\end_layout
\begin_layout Standard
As reset value, we initialize the CPU so that it is about to fetch the next
instruction from address 0.
The stacks are all empty, the registers contain all zeros.
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Scrap
<>=
\newline
state <= 2'b11;
\newline
P <= rstaddr;
\newline
T <= 16'h0000;
\newline
I <= 16'h0000;
\newline
R <= 16'h0000;
\newline
c <= 1'b0;
\newline
sp <= 0;
\newline
rp <= 0;
\newline
@
\end_layout
\begin_layout Standard
The transition to the next state (the NEXT within a bundle) is done separately.
That's necessary, since the assignments of the other variables are not
just dependent on the current state, but partially also on the next state
(e.g.
when to fetch the next instruction word).
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Scrap
<>=
\newline
wire [1:0] nextstate;
\newline
\newline
assign nextstate = ((~|inst) || (|inst[4:3])) ?
\newline
state[1:0] + 2'b01 : 2'b00;
\newline
@
\end_layout
\begin_layout Subsection
Debugging
\end_layout
\begin_layout Standard
For debugging purposes, all registers are memory read--writable.
This requires an external bus master attached to the debugging interface.
The debugging interface is configured with the DEBUGGING flag.
It's only active when the processor is stopped, so the processor itself
can't access its own registers.
\end_layout
\begin_layout Standard
The debugging module offers the following registers as address space:
\end_layout
\begin_layout Standard
\align center
\begin_inset Tabular
\begin_inset Text
\begin_layout Standard
\emph on
Address
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
\emph on
read
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
\emph on
write
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
$FFE0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
stack[sp++]
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
push+T
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
$FFE2
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
rstack[rp++]
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
rpush+R
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
$FFE4
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
bp
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
bp
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
$FFE6
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
state+stop
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
state
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
$FFE8
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
P
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
P
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
$FFEA
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
T
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
T
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
$FFEC
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
R
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
R
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
$FFEE
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
I
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Standard
I
\end_layout
\end_inset
|
\end_inset
\end_layout
\begin_layout Standard
The stacks and the state register change state when being read, so be careful!
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Scrap
<>=
\newline
`ifdef DEBUGGING
\newline
module debugger(clk, nreset, run,
\newline
addr, data, r, w,
\newline
cpu_addr, cpu_r,
\newline
drun, dr, dw, bp);
\newline
parameter l=16, dbgaddr = 12'hFFE;
\newline
input clk, nreset, run, r, cpu_r;
\newline
input [1:0] w;
\newline
input [l-1:1] addr;
\newline
input `L data, cpu_addr;
\newline
output drun, dr, dw;
\newline
output `L bp;
\newline
\newline
reg drun, drun1;
\newline
reg `L bp;
\newline
wire dsel = (addr[l-1:4] == dbgaddr);
\newline
assign dr = dsel & r;
\newline
assign dw = dsel & |w;
\newline
\newline
always @(posedge clk or negedge nreset)
\newline
if(!nreset) begin
\newline
drun <= 1;
\newline
drun1 <= 1;
\newline
bp <= 16'hffff;
\newline
end else begin
\newline
if(cpu_addr == bp && cpu_r)
\newline
{ drun, drun1 } <= 0;
\newline
else if(run) drun <= drun1;
\newline
if((dr | dw) && (addr[3:1] == 3'h3)) begin
\newline
drun <= !dr & dw;
\newline
drun1 <= !dr & dw & data[12];
\newline
end
\newline
if(dw && addr[3:1] == 3'h2) bp <= data;
\newline
end
\newline
\newline
endmodule
\newline
`endif
\newline
@
\end_layout
\begin_layout Scrap
<>=
\newline
`ifdef DEBUGGING
\newline
if(dw) case(daddr)
\newline
3'h0: { sp, T } <= { spdec, din };
\newline
3'h1: { rp, R } <= { rpdec, din };
\newline
3'h3: { c, state, sp, rp } <=
\newline
{ din[10:8],
\newline
din[sdep+3:4], din[rdep-1:0] };
\newline
3'h4: P <= din;
\newline
3'h5: T <= din;
\newline
3'h6: R <= din;
\newline
3'h7: I <= din;
\newline
default ;
\newline
endcase
\newline
if(dr) case(daddr)
\newline
3'h0: sp <= spinc;
\newline
3'h1: rp <= rpinc;
\newline
default ;
\newline
endcase
\newline
`endif
\newline
@
\end_layout
\begin_layout Scrap
<>=
\newline
`ifdef DEBUGGING
\newline
reg `L dout;
\newline
\newline
always @(daddr or dr or run or P or T or R or I or
\newline
state or sp or rp or c or N or toR or bp)
\newline
if(!dr || run) dout = 'h0;
\newline
else case(daddr)
\newline
3'h0: dout = N;
\newline
3'h1: dout = toR;
\newline
3'h2: dout = bp;
\newline
3'h3: dout = { run, 4'h0, c, state,
\newline
{4-sdep{1'b0}}, sp,
\newline
{4-rdep{1'b0}}, rp };
\newline
3'h4: dout = P;
\newline
3'h5: dout = T;
\newline
3'h6: dout = R;
\newline
3'h7: dout = I;
\newline
endcase
\newline
`endif
\newline
@
\end_layout
\begin_layout Scrap
<>=
\newline
`ifdef DEBUGGING
\newline
input [2:0] daddr;
\newline
input dr, dw;
\newline
input `L din, bp;
\newline
output `L dout;
\newline
`endif
\newline
@
\end_layout
\begin_layout Scrap
<>=
\newline
`ifdef DEBUGGING
\newline
or run or dw or daddr
\newline
`endif
\newline
@
\end_layout
\begin_layout Scrap
<>=
\newline
`ifdef DEBUGGING
\newline
if(!run && dw) case(daddr)
\newline
3'h0: dpush = 1;
\newline
3'h1: rpush = 1;
\newline
default ;
\newline
endcase
\newline
`endif
\newline
@
\end_layout
\begin_layout Subsection
ALU
\end_layout
\begin_layout Standard
The ALU just computes the sum with possible carry-ins, the logical operations,
and a zero flag.
It reuses the same logic (essentially what comprises a full adder) to do
both sums and logic.
Figure
\begin_inset LatexCommand \ref{fig:ALU-bit-slice}
\end_inset
illustrates the logic that processes one bit of the ALU operation: Two
multiplexers and one full adder (or the equivalent logic) per bit is sufficient
to implement an ALU.
The carry works as an AND gate if the carry in is 0 (both
\begin_inset Formula $a$
\end_inset
and
\begin_inset Formula $b$
\end_inset
input must be 1 to create a carry out), an OR gate if the carry in is 1
(both
\begin_inset Formula $a$
\end_inset
and
\begin_inset Formula $b$
\end_inset
input must be 0 to not create a carry out), and the sum is an XOR of
\begin_inset Formula $a$
\end_inset
and
\begin_inset Formula $b$
\end_inset
without carry in, and an XNOR with carry in.
The XNOR operation of the ALU is not used.
When the carry is propagated, a normal sum is generated; in this case,
the result
\begin_inset Formula $r$
\end_inset
selected is always the sum.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Standard
\align center
\begin_inset Graphics
filename alu.pdf
scale 40
\end_inset
\end_layout
\begin_layout Caption
\begin_inset LatexCommand \label{fig:ALU-bit-slice}
\end_inset
ALU bit slice
\end_layout
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Scrap
<>=
\newline
module alu(res, carry, zero, T, N, c, inst);
\newline
<>
\newline
\newline
wire `L r1, r2;
\newline
wire [l:0] carries;
\newline
\newline
assign r1 = T ^ N ^ carries;
\newline
assign r2 = (T & N) |
\newline
(T & carries`L) |
\newline
(N & carries`L);
\newline
// This generates a carry *chain*, not a loop!
\newline
assign carries =
\newline
prop ? { r2[l-1:0], (c | selr) & andor }
\newline
: { c, {(l){andor}}};
\newline
assign res = (selr & ~prop) ? r2 : r1;
\newline
assign carry = carries[l];
\newline
assign zero = ~|T;
\newline
endmodule // alu
\newline
@
\end_layout
\begin_layout Standard
The ALU has ports T and N, carry in, and the lowest 3 bits of the instruction
as input, a result, carry out, and test for zero as output.
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Scrap
<>=
\newline
parameter l=16;
\newline
input `L T, N;
\newline
input c;
\newline
input [2:0] inst;
\newline
output `L res;
\newline
output carry, zero;
\newline
\newline
wire prop, andor, selr;
\newline
\newline
assign { prop, selr, andor } = inst;
\newline
@
\end_layout
\begin_layout Subsection
Stacks
\end_layout
\begin_layout Standard
The stacks are modelled as block RAM in the FPGA.
In an ASIC, this is implemented with latches.
The block RAM (or register file) needs one read and one write port.
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
filbreak
\end_layout
\end_inset
\end_layout
\begin_layout Scrap
<>=
\newline
module stack(clk, sp, spdec, push, scan, in, out);
\newline
parameter dep=2, l=16;
\newline
input clk, push, scan;
\newline
input [dep-1:0] sp, spdec;
\newline
input `L in;
\newline
output `L out;
\newline
\newline
reg `L stackmem[0:(1@<>=
\newline
`ifndef FPGA
\newline
module latchen(clk, en, scan, out);
\newline
input clk, en, scan;
\newline
output out;
\newline
\newline
assign out = en & ~clk & ~scan;
\newline
endmodule
\newline
`endif
\newline
@
\newline
\end_layout
\begin_layout Bibliography
\bibitem {c18}
\emph on
c18 ColorForth Compiler,
\emph default
\noun on
Chuck Moore
\noun default
,
\begin_inset Formula $17^{\mathrm{th}}$
\end_inset
EuroForth Conference Proceedings, 2001
\end_layout
\end_body
\end_document