b16 Documentation

BERND PAYSAN

July 26, 2011

Abstract

This article presents architecture and implementation of the
b16 stack processor. This processor is inspired by CHUCK
MOORE’s newest Forth processors. The minimalistic design
fits into small FPGAs and ASICs and is ideally suited for
applications that need both control and calculations. The
factor is shifted towards control to save space. The synthe-
sizable implementation uses Verilog.

Introduction

Minimalistic CPUs can be used in many designs. A state
machine often is too complicated and too difficult to de-
velop, when there are more than a few states. A program
with subroutines can perform a lot more complex tasks,
and is easier to develop at the same time. Also, ROM and
RAM blocks occupy much less place on silicon than “random
logic”. That’s also valid for FPGAs, where “block RAM”
is—in contrast to logic elements—plenty.

The architecture is inspired by the c18 from CHUCK
MOORE [1]. The exact instruction mix is different; it also
differs from the standard b16 core. Also, this architecture
is byte-addressed.

A word about Verilog: Verilog is a C-like language, but
tailored for the purpose to simulate logic, and to write syn-
thesizable code. Variables are bits and bit vectors, and as-
signments are typically non-blocking, i.e. on assignments
first all right sides are computed, and the left sides are mod-
ified afterwards. Also, Verilog has events, like changing of
values or clock edges, and blocks can wait on them.

1 Architectural Overview

The core components are
e An ALU

e A data stack with top and next of stack (T and N) as
inputs for the ALU

e A return stack

An instruction pointer P
e An address mux addr, to address external memory
e An instruction latch I

Figure 1 shows a block diagram.

RAM/ROM

Instruction Word

Address MUX

TOS J
NOS

L

v

Figure 1: Block Diagram

Stack Return-Stack

1.1 Register

In addition to the standard Forth machine registers there
are control registers for external RAM (rd and wr), stack
pointers (sp and rp), and a carry c. For consistency with
Chuck Moores’ nomenclature, violating most coding style
guidelines, the Forth machine registers are single-letter vari-
ables in upper case. Since the source code is a IyX docu-
ment, you can use the “search whole word” mode to find
them easily, and they also show up on top of the signal list
during simulation.

’ Name \ Function ‘

T Top of Stack

I Instruction Bundle

P Program Counter

R Top of Returnstack
Processor State

Sp Stack Pointer

p Return Stack Pointer
c Carry Flag

(register declarations)=
reg [sdep-1:0] sp;
reg [rdep-1:0] rp;

reg ‘L T, I, P, R;
reg [1:0] state;
reg c;

b16 Documentation

BERND PAYSAN

2 INSTRUCTION SET

0 1 2 3 4 5 6 7 Comment
0 | nop | call | jmp | ret | jz jnz | je | jnc
exec | goto | ret | gz | gnz | gc | gnc | for slot 3
8 | xor | com | and | or + +c | x+ | /-
10| '+ | @+ Q@ lit | ¢+ | c@+ | c@ | litc
I Q. @) lit cl. | c@. | c@ | litc | for slot 1
18 | nip | drop | over | dup | >r r>

Table 1: Instruction Set

2 Instruction Set

There are 32 different instructions. Since several instruc-
tions fit into a 16 bit word, we call the bits to store the
packed instructions in an instruction word “slot”, and the
instruction word itself “bundle”. The arrangement here is
1,5,5,5, i.e. the first slot is only one bit large (the more
significant bits are filled with 0), and the others all 5 bits.

The operations in one instruction word are executed one
after the other. Each instruction takes one cycle, memory
operation (including instruction fetch) need another cycle.
Which instruction is to be executed is stored in the variable
state.

The instruction set is divided into four groups: jumps,
ALU, memory, and stack. Table 1 shows an overview over
the instruction set. Note: Some special characters indicate
functions as follows:

! “store”
@ “load”,
> “to” if before, “from” if afterwards.

Operations will be described using a “stack effect”. This
is a template for the stack elements before and after the
operation, separated by a long dash. The names are listed
in the order bottom to top, unchanged stack elements below
are not listed.

Jumps use the rest of the instruction word as target ad-
dress (except ret). The lower bits of the instruction pointer
P are replaced, there’s nothing added. For instructions in
the last slot, no address remains, so they use T (TOS) as
target.

(instruction selection)=
// instruction and branch target selection
wire [4:0] inst, rwinst;
reg ‘L jmp;

{ 4’0000, data[15], I[14:0] }
>> (5%(3-state[1:0]));

assign rwinst = { 5°b00000, I[14:0] }

>> (5% (3-state[1:0]));

assign inst =

always @(state or I or P or T or data)
case(state[1:0])

2’b00: jmp = { datal[14:0], 1°b0 };
2°b01: jmp = { P[15:11]1, I[9:01, 1°b0 };
2°b10: jmp = { P[15:6], I[4:0], 1°b0 };
2°b11: jmp = { T[15:1], 1°b0 };

endcase // casez(state)

The instructions themselves are executed depending on
inst:

(instructions)=
case(inst)
(control flow)
(ALU operations)
(load/store)
(stack operations)
endcase // case(inst)

2.1 Jumps

In detail, jumps are performed as follows: the target ad-
dress is stored in the address latch addr, which addresses
memory, not in the P register. The register P will be set to
the incremented value of addr, after the instruction fetch
cycle. Apart from call, jmp and ret there are conditional
jumps, which test for 0 and carry. The lowest bit of the
return stack is used to save the carry flag across calls. Con-
ditional instructions don’t consume the tested value, which
is different from Forth.

To make it easier to understand, I also define the effect of
an instruction in a pseudo language. Every instruction has
a stack effect (before—after) with top of stack on the right,
“r:” prefix indicating return stack, and register assignments:

nop (—)

call (—1:P)P« jmp;c« 0

b16 Documentation

BERND PAYSAN

2 INSTRUCTION SET

Jmp (—) P« jmp

ret (r:a—)P+« a ASFFFE; c<+ aAl
jz (n—) if(n=0)P « jmp

jnz (n—) if(n #0)P < jmp

jc (x—) if(c) P« jmp

jnc (x—) if(c=0)P < jmp

(control flow)=
5°b00001: begin // call
rp <= rpdec;

R <= { "|state 7 incaddr[15:1] : P[15:1], c };
P <= jmp;
c <= 1’b0;

if (state == 2’bi11)
end // case: 5’b00001
5°b00010: begin // jmp

‘DROP;

P <= jmp;

if(state == 2’b11l) ‘DROP;
end
5°b00011: // ret

{rp, ¢, P, R} <=

{ rpinc, R[0], R[1-1:1], 1°bO, toR };
5°b00100, 5’b00101, 5°b00110, 5’°b00111:
begin // conditional jmps

if ((idnst[1] ? ¢ : zero) ~ inst[0])
P <= jmp;
‘DROP;

end

2.2 ALU Operations

The ALU instructions use the ALU, which computes a result
res and a carry bit from T and N. The instruction com is
an exception, since it only inverts T—that doesn’t require
an ALU.

Ordinary ALU instructions just write the result of the
ALU into T and ¢, and reload N.

xor (ab—1)r«a®b

com (a—r1)7 < a®S$FFFF, c+ 1
and (ab—r1)r<aAbd

or (ab—r1)r<aVd

+ (ab—T1)c,r<a+bd

4+c (ab—T1)c,r+a+b+c

x+ (ab—ar)if(c)c,,r < atbelsec,,r + 0,b; 1, R, ¢+
cn, T R

/—(ab—ar) cpr, ¢« a+b+ 1;if(cVey)r < ry;
c¢,m,R<nrR,cVe,

(ALU operations)=
5°b01001: // com
{c, T} <={1b1, °T };
5°b01110: // *+
{T, R, c} <=
{c?{ carry, res } :
5°bo1111: // /-
{c¢c, T, R} K=
{ (c | carry) ? res : T, R, (c | carry) };
5’b01000, 5’b01010, 5’°b01011, 5°b01100, 5’b01101:
// xor, and, or, +, +c
{sp, ¢, T} <= { spinc, carry, res };

{1’00, T}, R}

2.3 Memory Instructions

Memory instructions use either T as address, and N as data
(source or destination), or P as address, and T as desti-
nation (literals). The address is auto-incremented, except
for instructions in the first slot which use T as address—
this is to implement read-modify-write instructions (non-
incremeting is written as @Q. or !. in the assembler, don’t
care as @* or I*).

'+ (n A—A’) mem[A] < n; A’ + A+2
@+ (A—m A)n<+ mem[Al; A’ < A+2
@ (A—n) n < mem[A];

lit (—n) n < mem[P]; P+ P+2

cl+ (c A—A’) mem.b[A] <~ ¢ A/ +— A+1
c@+ (A—cA’) c+memb[A]; A’ +— A+1
c@ (A—c) c + mem.b[A];

litc (—c) c+ mem.b[P; P+ P+1

b16 Documentation

BERND PAYSAN

2 INSTRUCTION SET

(address handling)=

wire ‘L incaddr, dataw, datas;
wire tos2n;
wire incby, bswap, addrsel, access, rd;
wire [1:0] wr;
assign incby = (rwinst[4:2] != 3°b101);
assign access = (rwinst[4:3]==2’b10);
assign addrsel = rd 7
(access & (rwinst[1:0] != 2°bil1)) |wr;

assign rd = (state==2’b00) ||
(access && (rwinst[1:0]!'=2’b00));

assign wr = (access && (rwinst[1:0]==2°b00)) ?
{ "rwinst[2] | ~T[0],
“rwinst[2] | T[O] } : 2’b00;

assign addr = addrsel ? T : P;
assign incaddr = addr + incby + 1;
assign tos2n = (!rd | (rwinst[1:0] == 2°b11));
assign toN = tos2n ? T : dataw;
assign bswap = “incby " addr[0];
assign datas = bswap 7 { data[7:0], data[1-1:8] }

. data;
assign dataw = incby 7 datas

: { 8°h00, datas[7:0] };
assign dataout = bswap ? { N[7:0], N[1-1:8] }

: N
Memory access can’t just be done word wise, but also

byte wise. Therefore two write lines exist. For byte wise
store the lower byte of T is copied to the higher one.

(load/store)=

5°b10000, 5°b10001, 5°b10100, 5°b10101:

begin // '+, @+, cl+, c@+
if (nextstate != 2°b10) T <= incaddr;
sp <= rd 7 spdec :

end

5°b10010, 5°b10011, 5°b10110, 5°b10111:
T <= dataw; // @, 1lit, c@, litc

spinc;

Memory accesses need an extra cycle. Here the result of
the memory access is handled.

(load-store)=
(pointer increment)
if(|state[1:0]) begin
(store afterwork)
end else begin
(ifetch)

end

(debug)=
$write("%b[%b] T=Ybix:%x[hx], ",
inst, state, ¢, T, N, sp);
$urite("P=Yx, I=Y%x, R=Vx[%x], res=%bl%x\n",
P, I, R, rp, carry, res);

After the access is completed, the result for a load has to
be pushed on the stack, or into the instruction register; for
stores, the TOS is to be dropped.

(store afterwork)=
if(rd && { inst[4:3], inst[1:0] } != 4°b1010)
sp <= spdec;
if(lwr) sp <= spinc;
Furthermore, the incremented address may go back to the
program pointer.
(pointer increment)=
if (" |state ||
({ inst[4:3], inst[1:0] } == 4°b1011))
P <= incaddr;
To shortcut a nop in the first instruction, there’s some
special logic. That’s the second part of NEXT.
(ifetch)=
I <= data;
if(!data[15]) state[1:0] <= 2°b01;

2.3.1 Peripherals

Peripherals should only use address bits [15:1], read a whole
word, and select the bytes written to based on the two write
bits (bit 1 for most significant byte, bit 0 for least significant
byte).

2.4 Stack Instructions

Stack instructions change the stack pointer and move values
into and out of latches. With the 6 used stack operations,
one notes that swap is missing. Instead, there’s nip. The
reason is a possible implementation option: it’s possible to
omit N, and fetch this value directly out of the stack RAM.
This consumes more time, but saves space.

nip (ab—b)
drop (a—)
over (ab—aba)

dup (a—aa)

>r (a—r:a)

r> (ria—a)

(stack operations)=
5°b11000: sp <= spinc; // nip
5°b11001: ‘DROP; // drop
5'b11010: { sp, T } <= { spdec, N }; // over
5’b11011: sp <= spdec; // dup
5°b11100: begin // >t

R <= T; rp <= rpdec; ‘DROP;

end // case: 5’b11100

5’b11110: begin // r>
{sp, T, R} <= { spdec, R, toR };
rp <= rpinc;

end // case: 5’°b11110

default ; // mnoop

b16 Documentation BERND PAYSAN 3 THE REST OF THE IMPLEMENTATION

3 The Rest of the Implementation (debugger.v)=

(header)
First the implementation file(s) with comment and modules. ‘include "bl6-defines.v"
You can either have all in one file (b16.v), or each module (debugger)

in a file with the same name as the module—the defines
will go to bi6-defines.v for central manipulation of the (gpl-header)=

defines. This program is free software; you can redistribute it
(header)= it under the terms of the GNU General Public License a
/% - the Free Software Foundation; version 2 of the License

* bl6 core: 16 bits, Thi he h n . 11
x inspired by c18 core from Chuck Moore is program is dlstrlbuted.ln the hope t aF 1t.w1 b
but WITHOUT ANY WARRANTY; without even the implied war

* (c) 2002-2011 by Bernd Paysan
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
GNU General Public License for more details.
* (gpl-header)

*/

This is not the source code of the program, the source
(defines)= literate programming style article.
‘define L [1-1:0])
(inst-comment)=
‘define DROP { sp, T } <= { spinc, N } * instructlon;et:
‘define DEBUGGING » 5, 5, 5 bits

*

‘define FPGA * 6 1 2 3 4 5 6 7
// ‘define BUSTRI * 0: nop call jmp ret jz jnz jc jnc
x /3 exec goto ret gz gnz gc gnc
(b16.v)= * 8: xor com and or + +c o+ /-
(header) * 10: '+ @+ ¢l 1it c!+ cO+ c@ litc
/% *x /11, @. @ lit c¢!. c@. c@ litc
(inst-comment) * 18: nip drop over dup >r >
*/
(defines) 3.1 Top Level
(ALU) The CPU consists of several parts, which are all imple-
(Stack) mented in the same Verilog module.
cpu
gd};biggeﬂ {cpu)=
module cpu(clk, latclk, run, nreset, addr, rd, wr, dat
(b16-defines.v)= dataout, gwrite
(defines) “ifdef DEBUGGING,

dr, dw, daddr, din, dout, bp‘endif);
port declarations)
register declarations)
instruction selection)
ALU instantiation)

(alu.v)= (
?
(
(ALU) Eaddress handling)
(
(
(

(header)
‘include "bl6-defines.v"

stack pushs)

(stack.v)= stack instantiation)

(header) state changes)

‘include "bl6-defines.v" debugging read)

(Stack)

always @(posedge clk or negedge nreset)

(cpu.v)= (register updates)

(header)

/* endmodule // cpu

(inst-comment)

*/

‘include "bl6-defines.v"

(cpu)

b16 Documentation

BERND PAYSAN

3 THE REST OF THE IMPLEMENTATION

First, Verilog needs port declarations, so that it can know
what’s input and output. The parameter are used to con-
figure other word sizes and stack depths. The CPU is not
fully scalable, e.g. the instruction decoder or the byte swap
operation for byte access depends on 16 bit word size, but
those parts of the CPU that are scalable can be scaled by
changing that parameter—the others need manual interven-
tion.

(port declarations)=
parameter rstaddr=16’h3FFE, show=0,
1=16, sdep=4, rdep=4;
input clk, latclk, run, nreset, gwrite;
output ‘L addr;
output rd;
output [1:0] wr;
input ‘L data;
output ‘L dataout;
(debugging-ports)

The ALU is instantiated with the configured width, and
the necessary wires are declared

(ALU instantiation)=
wire ‘L res, toN, toR, N;
wire carry, zero;

alu #(1) alul6(.res(res), .carry(carry),
.zero(zero),
.T(T), .N(N), .c(c),
.inst (inst[2:01));

Since the stacks work in parallel, we have to calculate
when a value is pushed onto the stack (thus only if some-
thing is stored there).

(stack pushs)=
reg dpush, rpush;

always Q@(state or inst or rd or run (dbg senselist))

begin
rpush = 1°b0;
dpush = (|state[1:0] & rd) |

(inst[4] && inst[3] && inst[1]);
case(inst)
5°b00001: rpush =
5°b11100: rpush
default ;
endcase // case(inst)
(stack debugging)
end

|state[1:0]
1°b1;

| run;

The stacks don’t only consist of the two stack mod-
ules, but also need an incremented and decremented stack
pointer. The return stack even allows to write the top of
return stack even without changing the return stack depth.

(stack instantiation)=
wire [sdep-1:0] spdec, spinc;
wire [rdep-1:0] rpdec, rpinc;

stack #(sdep,l) dstack(.clk(latclk),
.sp(sp),
.spdec(spdec),
.push(dpush),
.in(toN),
.out(N),
.gurite(gurite));

stack #(rdep,1l) rstack(.clk(latclk),
.sp(rp),
.spdec(rpdec),
.push(rpush),

.in(R),

.out (toR),

.gwrite(gwrite));
assign spdec = sp-{{(sdep-1){1’b0}}, 1°bl};
assign spinc = sp+{{(sdep-1){1°b0}}, 1’bl};
assign rpdec = rp-{{(rdep-1){1°b0}}, 1’bl};
assign rpinc = rp+{{(rdep-1){1°b0}}, 1’bl};

The basic core is the fully synchronous register update.
Each register needs a reset value, and depending on the state
transition, the corresponding assignments have to be coded.
Most of that is from above, only the instruction fetch and
the assignment of the next value of incby has to be done.

(register updates)=
if (!nreset) begin
(resets)
end else if(run) begin
‘ifdef REPORT_VERBOSE
if (show) begin
(debug)
end
‘endif
(load-store)
state <= nextstate;
(instructions)
end else begin // debug
(debugging)

end // else: !'if(nreset)

As reset value, we initialize the CPU so that it is about
to fetch the next instruction from address 0. The stacks are
all empty, the registers contain all zeros.

(resets)=
state <= 2’bl1;
P <= rstaddr;
T <= 16’h0000;
I <= 16’°h0000;
R <= 16’h0000;
c <= 1’°b0;
sp <= 0;

rp <= 0;

b16 Documentation

BERND PAYSAN

3 THE REST OF THE IMPLEMENTATION

The transition to the next state (the NEXT within a bun-
dle) is done separately. That’s necessary, since the assign-
ments of the other variables are not just dependent on the
current state, but partially also on the next state (e.g. when
to fetch the next instruction word).

(state changes)=

wire [1:0] nextstate;

(Clinst) || (linst([4:3])) 7
state[1:0] + 2°b01 : 2°b00;

assign nextstate =

3.2 Debugging

For debugging purposes, all registers are memory read-—
writable. This requires an external bus master attached
to the debugging interface. The debugging interface is con-
figured with the DEBUGGING flag. It’s only active when
the processor is stopped, so the processor itself can’t access
its own registers.

The debugging module offers the following registers as
address space:

’ Addnxs‘ read ‘ write ‘
SFFEO | stack[sp++]| | push+T
$FFE2 | rstack[rp++] | rpush+R
$FFE4 bp bp
$FFE6 | state+stop state
$FFES P P
$FFEA T T
$FFEC R R
$FFEE 1 1

The stacks and the state register change state when being
read, so be careful!

(debugger)=

‘ifdef DEBUGGING

module debugger(clk, nreset, run,
addr, data, r, w,
cpu_addr, cpu_r,
drun, dr, dw, bp);

parameter 1=16, dbgaddr = 12’hFFE;

input clk, nreset, run, r, cpu_r;

input [1:0] w;

input [1-1:1] addr;

input ‘L data, cpu_addr;

output drun, dr, dw;

output ‘L bp;

reg drun, druni;

reg ‘L bp;

wire dsel = (addr[1-1:4] == dbgaddr);
assign dr = dsel & r;

assign dw = dsel & |w;

always @(posedge clk or negedge nreset)
if (!nreset) begin
drun <= 1;
drunl <= 1;
bp <= 16’hffff;
end else begin
if(cpu_addr == bp && cpu_r)
{ drun, drunl } <= 0;
else if(run) drun <= drunil;
if((dr | dw) && (addr[3:1] ==
drun <= !dr & dw;
drunl <= !'dr & dw & datal[12];
end
if(dw && addr([3:1] ==
end

’h3)) begin

’h2) bp <= data;

endmodule
‘endif

(debugging)=
‘ifdef DEBUGGING
if(dw) case(daddr)

3’h0: { sp, T } <= { spdec, din };
3’h1: { rp, R } <= { rpdec, din };
3’h3: { c, state, sp, rp } <=
{ din[10:8],
din[sdep+3:4], din[rdep-1:0] };
3’h4: P <= din;
3’h5: T <= din;
3’h6: R <= din;
3’h7: I <= din;
default ;
endcase

if(dr) case(daddr)
3’h0: sp <= spinc;
3’hl: rp <= rpinc;
default ;

endcase

‘endif

b16 Documentation

BERND PAYSAN 3 THE REST OF THE IMPLEMENTATION

(debugging read)=
‘ifdef DEBUGGING

reg ‘L dout; o s

always @(daddr or dr or run or P or T or R or I or cli+1] NT Full]
state or sp or rp or ¢ or N or toR or bp) Adder

if(!dr || run) dout = ’hO;

else case(daddr)

3’h0: dout = N;

3’h1: dout = toR;

3’h2: dout = bp;

3°h3: dout = { run, 4’°h0, c, state,
{4-sdep{1°b0}}, sp,
{4-rdep{1°b0}}, rp };

3’h4: dout = P;
3’°h5: dout = T;
3’h6: dout = R;
3’h7: dout = I;
endcase
‘endif

(debugging-ports)=
‘ifdef DEBUGGING
input [2:0] daddr;
input dr, dw;
input ‘L din, bp;
output ‘L dout;

‘endif

(dbg senselist)=
‘ifdef DEBUGGING
or run or dw or daddr
‘endif

(stack debugging)=
‘ifdef DEBUGGING
if ('run && dw) case(daddr)
3’h0: dpush = 1;

3’hl: rpush = 1;
default ;
endcase
‘endif

r[li]

T BITAfT 2] 1n0]

Figure 2: ALU bit slice

3.3 ALU

The ALU just computes the sum with possible carry-ins,
the logical operations, and a zero flag. It reuses the same
logic (essentially what comprises a full adder) to do both
sums and logic. Figure 2 illustrates the logic that processes
one bit of the ALU operation: Two multiplexers and one
full adder (or the equivalent logic) per bit is sufficient to
implement an ALU. The carry works as an AND gate if the
carry in is 0 (both @ and b input must be 1 to create a carry
out), an OR gate if the carry in is 1 (both @ and b input
must be 0 to not create a carry out), and the sum is an
XOR of a and b without carry in, and an XNOR with carry
in. The XNOR operation of the ALU is not used. When
the carry is propagated, a normal sum is generated; in this
case, the result r selected is always the sum.

(ALU)=
module alu(res, carry, zero, T, N, c, inst);
(ALU ports)
wire ‘L rl, r2;

wire [1:0] carries;

assign ri
assign r2

T °~ N ° carries;
(T & N) |
(T & carries‘L) |
(N & carries‘L);
// This generates a carry *chain*, not a loop!
assign carries =
prop 7 { r2[1-1:0], (c | selr) & andor }
: { ¢, {(1){andor}}};
assign res = (selr & “prop) 7 r2 : ri;
assign carry = carries[1];
assign zero = ~|T;
endmodule // alu

The ALU has ports T and N, carry in, and the lowest 3
bits of the instruction as input, a result, carry out, and test
for zero as output.

b16 Documentation BERND PAYSAN

REFERENCES

(ALU ports)=
parameter 1=16;
input ‘L T, N;
input c;
input [2:0] inst;
output ‘L res;
output carry, zero;

wire prop, andor, selr;

assign { prop, selr, andor } = inst;

3.4 Stacks

The stacks are modelled as block RAM in the FPGA. In an
ASIC, this is implemented with latches. The block RAM
(or register file) needs one read and one write port.

(Stack)=
module stack(clk, sp, spdec, push, gwrite, in, out);
parameter dep=2, 1=16;
input clk, push, gwrite;
input [dep-1:0] sp, spdec;
input ‘L in;
output ‘L out;

reg ‘L stackmem[0: (1<<dep)-1];

“ifndef FPGA
reg [dep:0] ij;

always @(clk or push or gwrite or spdec or in)
if (Tclk)
if (gwrite)
for(i=0; i<(1<<dep); i=i+1)
stackmem[i] <= in;
else if (push) stackmem[spdec] <= in;
‘else
always @(posedge clk)
if (push)
stackmem[spdec] <= in;
‘endif

assign out = stackmem[sp];

endmodule // stack

References

[1] ¢18 ColorForth Compiler, CHUCK MOORE,
17" EuroForth Conference Proceedings, 2001

	Architectural Overview
	Register

	Instruction Set
	Jumps
	ALU Operations
	Memory Instructions
	Peripherals

	Stack Instructions

	The Rest of the Implementation
	Top Level
	Debugging
	ALU
	Stacks

