simpleOOP Glossary

Introduction

File OOP.FS holds the definitions for "simpleOOP", which loads on top of gforth 0.62. It makes
maximum use of the existing Forth mechanisms to realize OO and therefore, it is very concise - 415
lines of code realize all mechanisms, which can be expected from an OO package to the best of my
knowledge, namely: Polymorphism, late binding, single inheritance and Proxies.

At present the code is dependent on gforth 0.62, because of the way the interpreter and compiler has
to be redefined. It could be easily ported to gforth 0.71 as well. | believe that the concepts used can
be expressed in Standard Forth, but | am not an expert in it and therefore, | would need to
collaborate with one if needed.

File TEST.FS defines classes CELL, BUFFER, and STRING and a couple of methods as a proof of
concept. These definitions are followed by some test code, which predominantely test proxy
handling and polymorphism (@ in String). File DEMO.FS is another test case file that concentrates
on polymorphism and late binding.

This work is based on the ideas put forward by Manfred Mahlow for the first time. His concepts
revolved around the so called "prelude concept", which would simplify class context setting without
the need to make object defining words immediate and state smart. But using the prelude concept
requires a modification of forth's headers, which requires system dependent modifications and
recompilation of the Forth system.

Initially I implemented the OO package in the cross-compiler for uCore - without late binding nor
polymorphism. But Classes, Objects, Attributes, Proxys, and Arrays and their inheritable methods
were already there. Thanks to Andrew Haley's insistence | started to think about an efficient late-
binding mechanism, and the solution I found is embarrassingly simple and efficient. Its runtime
overhead is one additional Forth branch compared to static :-definitions. And Bernd Paysan argued
that I couldn't possibly do without vTables for proper polymorphism. As it turns out, Bernd was
both right and wrong: simpleOOP does not have classical vTables; instead, the wordlist associated
with each class constitutes the vTable of that class. These "virtual” vTables are indexed by pattern-
matching (searching for a name), the table entries are directly executable (which is unusual), and
the dynamic binding element is a re-writeable branch. To preserve polymorphism on inheritance, all
words of the superclass will be physically copied into the subclass's wordlist upon creation, much
like you make a copy of the vTable.

Instead of creating new words for OOP handling, | tried to make existing words behave differently
depending on whether they are used in a Forth or in a Class context. Therefore, there is e.g. no
special defining word for methods. : just behaves differently, if we are compiling into a class
wordlist. This helps to minimize the number of new words needed for simpleOOP and the resulting
code looks very "forthish".

In a class compilation context, ": <name>" produces a :-definition, which starts with a branch to its
code body. Therefore, the semantics of <name> depends on the (re-writeable) branch destination.
Later on, when ": <name>" is redefined in order to e.g. instrument a method, no new header is
created, but the branch destination of its first version is re-written. This is an efficient late binding
mechanism.

Polymorphic methods have to be declared explicitly using "Polymorphic <name>". This allocates
space for an XT in each instantiated object and its "default” behaviour can be specified using

": <name>" later on. In addition, an object specific behaviour can be assigned using bind.
Polymorphic methods can only be created while a class is not yet sealed. It will be sealed
automatically as soon as a) an object of that class is created, b) the class is embedded in another
class as an attribute, or ¢) when a subclass is created.

simpleOOP glossary, Version 2.2, 23.1.2012, ks lof4

simpleOOP Glossary

Forth words

Class (<name> --)
Defining word. Based on Forth vocabularies, it holds a wordlist for the class's methods and
keeps tabs of attribute sealed/unsealed, the size of an object, and a pointer to the parent class,
which may have been inherited. By default, the parent class points to the ClassRoot wordlist,
which is therefore inherited by every class (see below).

When <name> is executed later on, it sets the class context. As with Forth vocabularies,
definitions can be used to add to its wordlist.

ClassRoot (--)
A wordlist of fundamental OOP words, which are accessible in every class.

Polymorphic « —-)
Used in the form
Polymorphic <name>
to define polymorphic methods. At first, <name> will be associated with the "un-initialized
method" error handler. Later on, its specific behaviour in its own class or in a sub-class can be
defined by just defining a colon definition of the same name. An object specific method can
be assigned using BIND.

Oop (C --)
a Forth vocabulary that holds all primitives, which are needed to implement simpleOOP.

Root words

classes (--)
Lists all defined classes

methods (--)
Lists the methods of the most recently executed class and its inherited sub-classes.

ClassRoot words

Object (<name> --)

Used in the form <classname> Object <name>. Creates object <name> of class
<classname>.
<name> is a state smart word. When interpreted, it returns its object data field address and

sets the class context.
When compiled, it compiles its data field address as a Literal.

Attribute (<name> --)

Create attribute <name> in the current class as an embedded object of the most recent class
as an immediate word. Used in the form <classname> Attribute <name> in object
definitions before the class is sealed.

<name> is a state smart word.

When interpreted, it adds its data field offset to the object address on the stack.

When compiled, it compiles the offset as a Literal followed by + as operator.

simpleOOP glossary, Version 2.2, 23.1.2012, ks 20f4

simpleOOP Glossary

Proxy (<name> --)
Create proxy <name> of the recent class as an immediate word. Used in the form
<classname> Proxy <name> in object definitions before the class is sealed. It reserves
a field in class's objects for an execution token, which will be initialized with the
"un-initialized reference" error. When <name> is executed later on, it executes code, which
can be assigned to an object using bind. It resembles defer for objects.
<name> is a state smart word.
When interpreted, it executes the assigned code.
When compiled, it compiles the offset of <name>'s field in the object as a Literal followed by
a word that fetches and executes the assigned code.

bind (xt obj <proxyname> --), 1
bind assignes execution token Xt to a proxy or a polymorphic method, which has defined
for object obj.
bind is a state smart word. When interpreted, it stores Xt in the proxy / polymorphic
method field of obj.
When compiled, it compiles the offset of <proxyname> in obj as a Literal followed by
instruction do-proxy that assignes xt to the proxy or polymorphic method when
executed later on.

units (ul -- u2)
Used to compute the size u2 of allocating space needed for ul object data fields of the recent
class. Used e.g. in the form <classname> units allot.

allot (u--)
allocate u bytes space in objects of the current class.

size (-- bytes)
universal method that returns the size of the data field of the recent class's objects.

- (<name> -- xt)
returns the xt of <name> in the class context.

addr (obj -- addr), 1
Used in the form <objectname> addr as a universal method to switch back into the
Forth context leaving obj's data field address on the stack. <objectname> may consist
of the name of an object followed by a sequence of attribute names.

definitions (--)
used in the form <classname> definitions inorder to make <classname> the
compilation class.

(obj -- addr), 1
Synonym for addr. Used while debugging in order to escape the class context.

see (<name> --)
de-compiles <name>.

order (—-)
displays the actual class context.

simpleOOP glossary, Version 2.2, 23.1.2012, ks 30f4

simpleOOP Glossary

methods « —-)
used in the form <classname> methods to list the methods of class <classname>
and its inherited sub-classes.

words (—-)
used in the form <classname> words to list the methods of class <classname>.

simpleOOP glossary, Version 2.2, 23.1.2012, ks 4 of 4

